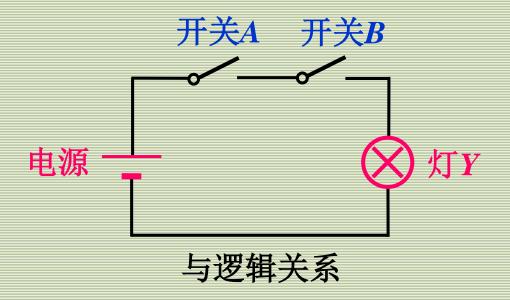


1.1 基本概念、公式和定理

- 1.1.1 基本和常用逻辑运算
- 一、三种基本逻辑运算
- 1. 与逻辑: 当决定一事件的所有条件都具备时,事 件才发生的逻辑关系。



功能表

A B	Y
断断	灭
断合	灭
合 断	灭
合 合	亮

与逻辑的表示方法:

真值表

(Truth table)

1	人は 二	L
TH		Ń
1	ロレフ	lacksquare
-/	能表	<u> </u>

\boldsymbol{A}	B	Y		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

设定变量 状态赋值

, , , , = ,					
A B	Y				
断断	灭				
断合	灭				
合 断	灭				
合 合	亮				

逻辑函数式

$$Y = A \cdot B = AB$$

逻辑符号

与门 (AND gate)

2. 或逻辑:

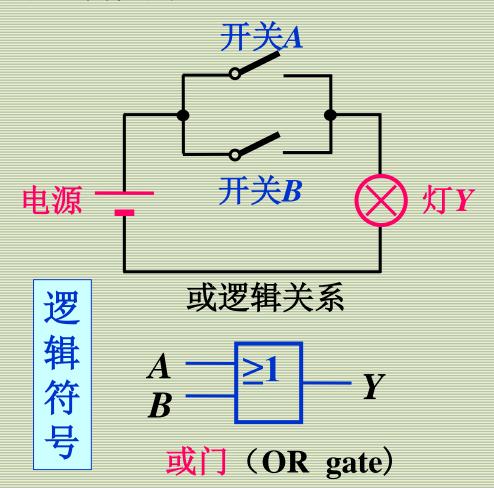
决定一事件的诸条件中,只要有一个或一个以上 具备时,事件就会发生的逻辑关系。

真值表

A B	Y		
0 0	0		
0 1	1		
1 0	1		
1 1	1		

逻辑函数式

$$Y = A + B$$



3. 非逻辑:

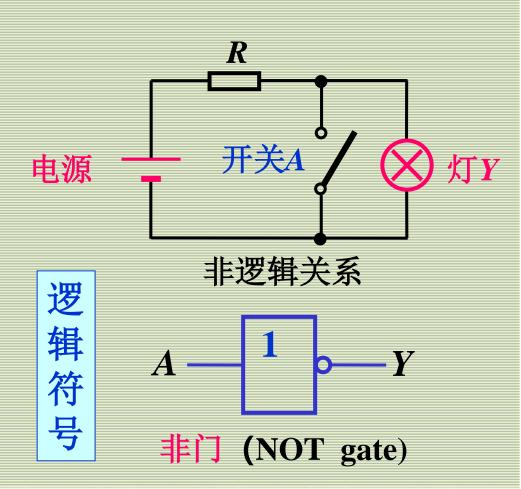
只要条件具备,事件便不会发生;条件不具备, 事件一定发生的逻辑关系。

真值表

\boldsymbol{A}	Y
0	1
1	0

逻辑函数式

$$Y = A$$



二、逻辑变量与逻辑函数及常用复合逻辑运算

1. 逻辑变量与逻辑函数

逻辑变量:在逻辑代数中,用英文字母表示的变量称为逻辑变量。在二值逻辑中,变量的取值不是1就是0。

原变量和反变量:字母上面无反号的称为原变量,有反号的叫做反变量。

逻辑函数:如果输入逻辑变量 $A \setminus B \setminus C \cdot \cdot \cdot$ 的取值确定之后,输出逻辑变量 Y 的值也被唯一确定,则称 $Y \not\in A \setminus B \setminus C \cdot \cdot \cdot \cdot$ 的逻辑函数。并记作 $Y = F(A, B, C \cdot \cdot \cdot)$

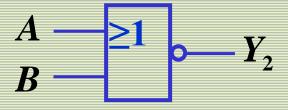
2. 几种常用复合逻辑运算

(1)与非逻辑

$$\begin{array}{ccc}
(NAND) & A & & & & & & \\
Y_1 & = \overline{AB} & B & & & & & \\
\end{array}$$

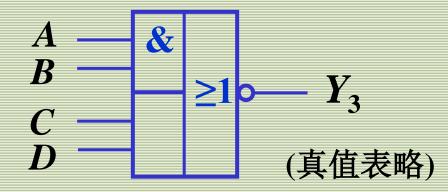
(2) 或非逻辑

$$Y_2 = \overline{A + B}$$



(3) 与或非逻辑

$$Y_3 = \overline{AB + CD}$$



$$A = 1$$

$$Y_4 = A \oplus B = A\overline{B} + \overline{A}B$$

\boldsymbol{A}	B	Y_4
0	0	0
0	1	1
1	0	1
1	1	0

原变量

反变量

(5) 同或逻辑 (异或非)

$$Y_{5} = \overline{A \oplus B}$$

$$= \overline{A} \overline{B} + AB$$

$$= A \odot B$$

3. 逻辑符号对照

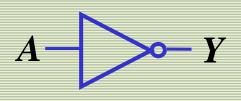
国标符号

曾用符号

美国符号

$$A \longrightarrow Y$$

$$A - 1 = \overline{A}$$



国标符号

曾用符号

$$A \longrightarrow Y$$

$$A$$
 \longrightarrow Y

$$A \longrightarrow Y$$

$$A \longrightarrow Y$$

$$A \longrightarrow Y$$

1.1.2 公式和定理

一、 常量之间的关系(常量: 0 和 1)

与:
$$0 \cdot 0 = 0$$
 或: $1 + 1 = 1$ 非: $0 = 1$

$$0 \cdot 1 = 0$$

$$1 + 0 = 1$$

$$\bar{1} = 0$$

$$1 \cdot 1 = 1$$

$$0 + 0 = 0$$

二、变量和常量的关系(变量: $A \times B \times C...$)

与:
$$A \cdot 1 = A$$
 或: $A + 0 = A$ 非: $A \cdot \overline{A} = 0$

$$A \cdot 0 = 0$$

$$A+1=1$$
 $A+A=1$

$$A + A = 1$$

三、与普通代数相似的定理

交換律

$$A \cdot B = B \cdot A$$

$$A+B=B+A$$

结合律

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$(A+B)+C=A+(B+C)$$

分配律

$$A(B+C) = AB + AC$$

$$A + BC = (A + B)(A + C)$$

与普通代数不同, 可将或运算变为两 个因式乘积。 与普通代数相同,可将 多个因式相 乘直接展开

四、逻辑代数的一些特殊定理

同一律(重叠律)
$$A \cdot A = A$$
 $A + A = A$

$$A \cdot A = A$$

$$A + A = A$$

$$A \cdot B = A + B$$

德·摩根定理
$$\overline{A \cdot B} = \overline{A + B}$$
 $A + B = A \cdot B$

$$\overline{\overline{A}} = A$$

[例 1.1.2] 证明: 德 • 摩根定理

\boldsymbol{A}	В	$A \cdot B$	$\overline{A \cdot B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$	A + B	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	0	1	1	0	1	1	0	0
1	0	0	1	0	1	1	1	0	0
1	1	1	0	0	0	0	1	0	0

相等

五、关于等式的两个重要规则

1. 代入规则: 等式中某一变量都代之以一个逻 辑函数,则等式仍然成立。

例如,已知
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 (用函数 $A+C$ 代替 A)
$$\overline{(A+C)+B} = \overline{A+C} \cdot \overline{B} = \overline{A} \cdot \overline{C} \cdot \overline{B}$$

2. 反演规则:

将Y式中 "."换成 "+","+"换成 "." "0"换成"1","1"换成"0" 原变量换成反变量, 反变量换成原变量

- 注意: 1.保持原运算顺序不变 2.不属于单个变量上的非号保留

反演规则的应用: 求逻辑函数的反函数

将 Y 式中 "."换成 "+","+"换成 "." "0"换成 "1","1"换成 "0" 原变量换成反变量, 反变量换成原变量

例如: 己知 $Y_1 = A(B+C) + CD$

注意运算顺序

则 $\overline{Y}_1 = (\overline{A} + \overline{BC})(\overline{C} + \overline{D})$

不属于单个变量上 的反号应保留

已知
$$Y_2 = \overline{AB} + C + D + C$$

则
$$\overline{Y_2} = \overline{(\overline{A} + B) \cdot \overline{C}} \cdot \overline{D} \cdot \overline{C}$$

六、若干常用公式

(1)
$$AB + A\overline{B} = A(B + \overline{B}) = A$$

(2)
$$A + AB = A(1+B) = A$$
 $\xrightarrow{\text{#F}}$ $A + A() = A$

(3)
$$A + \overline{AB} = (A + \overline{A})(A + B) = A + B$$

$$(4) AB + \overline{AC} + BC = AB + \overline{AC}$$

推广
$$AB + \overline{AC} + BC$$
 () = $AB + \overline{AC}$

$$(5) AB + AB = AB + AB$$